GELU(Gaussian Error Linear Unit)함수는 입력 값을 정규 분포의 확률로 변환하여 활성화하는 방식입니다. 입력이 클수록 더 많이, 작을수록 덜 활성화되며, 이를 통해 부드럽고 확률적인 활성화가 이루어집니다. 최신 신경망 모델에서 자주 사용되며, 학습의 안정성과 성능 향상에 기여합니다.GELU (Gaussian Error Linear Unit) 함수는 신경망에서 활성화 함수로 사용되는 함수 중 하나입니다.ReLU (Rectified Linear Unit)와 유사하게 비선형성을 제공하지만, 보다 매끄럽고 자연스러운 방식으로 동작합니다. 특히, Transformer와 같은 최신 신경망 구조에서 ReLU 대신 종종 사용되며, BERT 모델에서도 활성화 함수로 사용됩니다.1. GELU 함수의..